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Abstract—Tissue stiffness can provide key details about the
health and type of tissues. This paper presents the creation of
a miniaturised soft tissue stiffness sensor with dimensions that
make it suitable for palpation in minimally invasive surgery.
We introduce the stiffness sensor design and experimentally
test its force sensing, elasticity measurement, and dynamic
palpation performance. The sensor can measure normal forces
with an adjustable range. Angled forces were measured with
their magnitude and angles, 6y and 6 x, root-mean-square errors
(RMSE) of 8.37%, 6.68%, and 13.92% of their respective ranges.
Furthermore, samples with an elasticity between 4.20 kPa and
177.62 kPa, which were not in the training set, were measured
with an RMSE of 7.79% of the tested range. During palpation,
the boundary between the 13.4 kPa elastomer and the 2 mm
embedded 29.3 kPa elastomer was located with a signal-noise
ratio (SNR) of 77.04:1 and a mean offset of 0.706 mm. This
investigation provides new insights into sensing devices capable of
fitting trocars while measuring tissue elasticity and force during
minimally invasive procedures.

Index Terms—Sensor, Stiffness, Force, Palpation, Surgical

I. INTRODUCTION

N biomedical applications, the sense of touch allows

clinicians to assess tissue health and locate stiffer and
softer regions during palpation. Haptic sensors [1]-[4] and
probes [5], [6] have been produced to measure forces,
quantify tissue stiffness, or locate areas of different stiffness
during dynamic palpation. From these, several sensors have
demonstrated multiple of these functions.

Farragasso et al. developed a sensor to measure stiffness and
carry out dynamic palpation [1]. This was achieved through
optically tracking sprung indenters of different stiffness
interacting with the tissue. This device could measure the
spring stiffness of 0.29 N/mm and 0.62 N/mm samples at
angles up to 20° with maximum errors of 6.4% of sample
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stiffness. In robotic and handheld palpation this device could
also create a map of tissue stiffness. It interacted using stiff tips
increasing the likelihood of tissue damage and had a diameter
of over 25 mm, preventing it from being inserted through any
commonly available trocars.

Gelsight sensors have been shown to measure sample
hardness, detect embedded nodules and sense forces. Yuan
et al. demonstrated that using a neural network, this sensor
could measure the hardness of objects it was being pushed
onto [2]. Samples ranging in hardness from 00-8 Shore
hardness to 00-87 Shore hardness were tested. These were
made from elastomers which range in elasticity from around
55 kPa to around 827 kPa. Samples of trained shapes but
untrained hardness were measured with a root-mean-square
error (RMSE) of 00-5.18, 5.95% of the tested range. When
pressed against embedded nodules by Jia et al. a gelsight
sensor was able to detect the presence of 2 mm nodules at
depths of up to 5 mm [3]. Yuan et al. also showed that a
gelsight sensor could measure the magnitude of normal forces
applied by flat objects pushed against it with an RMSE of
1.857 N [4]. Li et al. and Lu et al. expanded on this showing
that these sensors could measure 3-axis forces, along with
torsional angles [7], [8]. These papers pushed the normal
force sensing accuracy to an RMSE of 0.033 N. Kara et al.
demonstrated a similar sensor’s ability to classify colorectal
cancer polyps both using phantoms and ex-vivo samples [9].
However, these sensors all had outer diameters over 35 mm
which is too large to fit through trocars for use in MIS.

Tactip sensors have been shown to measure forces and
identify embedded nodules. Giannaccini et al. [10] tested the
Tactip sensor’s force sensing abilities. A robot arm pressed
the Tactip sensor onto a flat load cell which measured the
corresponding forces. Results showed that the Tactip could
sense changes in force over a range of 0-4.413 N, as the arm
moved in steps of 0.5 mm, equivalent to a loading resolution
of about 0.1 N at the lowest load and 1 N at the highest load. A
pneumatically controllable tactip sensor was shown by Bewley
et al. to be able to identify 3 mm pins embedded up to 5 mm
deep [11]. The sensor could identify the depth of embedded
pins in over 90% of trials. These sensors had diameters over
30 mm, preventing them from being inserted into trocars.

Pressure modulated optical tracking (PMOT) sensors [12],
[13] have been shown to be able to measure forces, quantify
elasticity and locate boundaries in dynamic palpation. They
do this through tracking points on the inside of a membrane,
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Fig. 1. The m-PMOT with dimensions and parts labelled. Showing photographs of (a) the assembled m-PMOT sensor and (b) the m-PMOT sensor in a trocar,
along with CAD-rendered images of (c) a cross-sectional view of the sensor showing the support structure and (d) a view of the inside of the membrane

Showing the tracking points.

whilst controlling the compliance of the membrane through
internal pressure regulation. In [12], we showed that the PMOT
sensor could measure normal forces with a pneumatically
controllable force sensing range and measure the angle and
magnitude of forces. Across all data, the RMSEs for force,
0y and 0x were 9.86%, 5.26% and 8.35% of their respective
ranges. It was further shown in [13] that the PMOT sensor
could measure the elasticities of phantoms using a neural
network. Phantoms ranging from 4.20 kPa to 177.62 kPa in
elasticity were measured with an RMSE of 2.85% of range.
This paper also showed that the sensor could locate boundaries
between 13.4 kPa elastomer and embedded 29.3 kPa elastomer.
This was done both mounted on a linear rail where the SNR
was 39.51:1 and an offset of 1.526 mm and in participant-
controlled teleoperated palpation where the side on which the
boundary was located and the stiffer side of the boundary were
located correctly in 96.5% of trials. The PMOT sensors could
not be used in MIS applications as they had external diameters
of 20 mm. They were also sealed to the camera requiring the
entire system to be replaced after use.

Adapting soft multimodal haptic sensors to the minimally
invasive surgery (MIS) environment will enable surgeons to
locate and identify unhealthy tissue — even when tumours
are not visually detectable, such as those beneath the tissue
surface — using a single instrument while minimising tissue
damage. However, MIS surgical tools are inserted into the
patient through trocars [14], [15]. The most common internal
diameters for trocars are 5 mm, 10 mm, and 12 mm. None
of the devices that demonstrated their ability to measure
stiffness or hardness and locate inclusions or boundaries in
palpation or pressing have an outer diameter below 12 mm,
which prevents them from being used in MIS. Miniaturisation

remains a challenge in the development of devices for MIS,
especially for those pneumatically actuated [14]. For instance,
the miniaturisation of soft actuators developed through the
last decade [16]-[18] have been recently achieved [15], [19].
Visual-based sensors are often limited by the size of cameras
and the components around them [20]. Meanwhile, other
mechatronic systems would require multiple mechanisms to
measure these stimuli, increasing their size.

The contribution of this paper lies in the creation of a
miniaturised soft tissue stiffness sensor with dimensions that
make it suitable for palpation in minimally invasive surgery.
The specific novelties of this work are outlined as follows:

1) A stiffness sensor capable of quantifying the mechanical
elasticity of soft tissue has been miniaturised to an
external diameter of 11.6 mm, making it compatible
with standard 12 mm MIS trocars. Notably, this
reduction in size is achieved without compromising
the sensor’s palpation capabilities compared to our
previously reported large-scale prototype [12], [13].

2) The stiffness sensor is compatible with standard
minimally invasive surgical camera systems, such as
a sinuscope, enabling miniaturisation of the sensor
through integration with conventional laparoscopic
hardware.

The paper is structured as follows: Section II describes the
sensing principle and miniaturised soft-tipped sensor design.
Section III evaluates its force sensing performance, while
Section IV presents stiffness sensing experiments using tissue-
mimicking phantoms. Section V reports palpation results,
and Section VI analyses the sensor’s reach through trocars.
Section VII provides a comparative analysis with the large-
scale prototype, and Section VIII concludes the paper.
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Fig. 2. (a) When the membrane is pressed the tracking points move. Due to
the placement of the camera, a vertical movement of a tracking point is seen
as a horizontal movement in the image. (b) Tracking points move away from
the direction of contact. Hence, under normal forces, they move outwards.
The components used for recording tracking point movements, Ar & A6,
are also displayed. Ar records the movement of tracking points away from
the central point whilst A records movement around the central point.

II. SENSING PRINCIPLE AND MECHANICAL DESIGN
A. Sensing Principle

The sensor described in this paper is called the miniaturised
pressure modulated optical tracking (m-PMOT) sensor. This
sensor functions through the same sensing principle as the
sensors in [12] and [13]. Forces acting on the membrane
surface cause the tracking points to move away from the force,
as shown in Fig. 2. By tracking these points variables like
force magnitude, force directions and stiffness can be obtained.
The sensor adjusts the compliance of an elastomer membrane
through varying the internal pressure. As the internal pressure
increases, the membrane compliance decreases due to an
increase in internal air mass and an increase in membrane
strain. This adjustable compliance allows the sensor to alter
its force sensing range. It can also be used to measure
tissue stiffness at a single location by varying the compliance
and measuring the resulting membrane displacement (see
Supplementary Video S1).

B. Sensor Design and Fabrication

The sensor in this paper, shown in Fig. 1, is created by
minimising the sensors in [12] and [13] around an ESC Rigid
Sinuscope. This sinuscope has an external diameter of 2.7 mm
and a length of 175 mm.

A stiff housing with an outer diameter of 11.6 mm was
placed over the sinuscope with a membrane attached to its
distal end and pneumatic piping inserted into its proximal
end. This aligns with the ideal diameter > 12 mm for MIS
devices [21]. The housing consisted of inner and outer tubes
connected by a support structure. This structure stiffened the
sensor, ensured the alignment of components even under shear
loads, and allowed air to flow from the pneumatic pipe to
the membrane. Tolerating of the inner tube was performed
to minimise air leakage whilst not damaging the sinuscope.
This housing was printed from PA2200 (Nylon 12) on a EOS
FORMIGA P 110 printer. The housing was designed so that
the sensor could be placed over the sinuscope and clipped
into place without any modifications to the sinuscope. This

allowed the sensor to be removed for disposal whilst leaving
the sinuscope ready for sterilisation.

A soft membrane was cast from a mixture of 10 g of
Smooth-On Ecoflex 00-30 to 2 ml of Smooth-On Silc Pig
Black. The softer elastomer from [12] was chosen over the
elastomer from [13], which had better palpation performance,
due to geometric changes stiffening the membrane. The dome-
shaped membrane had an outer radius of 10 mm and a
thickness of 1 mm. The dome radius had to be decreased to
maintain height for force sensing, however, the thickness of
the membrane could not be decreased to compensate for the
reduction in compliance without hampering manufacturability.
It featured nine 1 mm diameter hemispherical tracking points,
raised on 0.16 mm cylinders, on its inside, one in the centre
and eight in a circle of radius 3 mm. The tracking points
had to be scaled down to maintain compliance and accuracy.
However, they became less reliably cast and harder to paint
when miniaturised which led to the need to raise them on
cylinders. These were painted with a mixture of Smooth-On
Psycho Paint and Silc Pig Cyan. The manufacturing became
less reliable for the miniaturised membrane as a result of the
reduction in space for outflow channels from the mould. This
led to the need for three elastomer degassing steps in a vacuum
chamber, one before pouring, another in the lower mould,
and finally after lowering the top mould. The membrane was
secured to the housing using instant adhesive and thread seal
tape.

Pneumatic piping was inserted and glued into the housing
and sealed with silicone sealant. The 4 mm diameter
pneumatic pipe was connected to a pressure supply via
an SMC ITV0010 pressure regulator which was used to
control the internal pressure of the sensor. The sinuscope
channelled light to the membrane and transmitted an image
of the membrane to an ESC Medicams Portable Endoscopy
Camera which fed frames to a computer. To compensate for
image distortion from the sinuscope, a camera calibration
was carried out using OpenCV. The camera was used to
take 25 images of a chessboard. These were run through
the findChessboardCorners and calibrateCamera algorithms
to extract the lens distortion coefficients. These were then used
to create an undistortion transformation which was applied to
every frame before tracking point positions were extracted.

A computer extracted the tracking point positions for each
frame sent from the camera. A 7 px by 7 px blur, a cyan
extracting colour mask, and a greyscale conversion were
applied to the image, before running a Canny edge detection
with a threshold of 80 and using the OpenCV findContours
algorithm to extract borders. Centers of borders with an area
of over 90 px were extracted as the positions of the centre
of tracking points. The tracking point colour and tracking
algorithm were kept as consistent as possible with [12] and
[13] to ensure that all changes in performance can be related
to design changes.

III. FORCE SENSING EXPERIMENTS

An analysis of the m-PMOT sensor’s force sensing
performance was carried out using the experimental setup
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Fig. 3. (a) During force sensing experiments, the m-PMOT sensor membrane was compressed by an F/T sensor mounted on a linear rail. (b) The force angle
could be altered by changing or rotating an angled plate in front of the F/T sensor.

presented in Fig. 3 and in line with the experiments run in [13].
This assessed the sensor’s ability to adjust its force sensing
range in normal force sensing. It further, studied the sensor’s
accuracy in measuring the angle and magnitude of angled
forces. Finally, it also allowed these results to be compared
between the m-PMOT sensor and the PMOT sensor in [12].

A. Normal Force Sensing Methodology

The normal force-sensing capabilities of the sensor were
assessed by compressing it using a force/torque (F/T) sensor
mounted on a linear rail. The internal pressure of the sensor
was set with the F/T sensor at a home position 20 mm from the
m-PMOT sensor membrane. The F/T sensor moved forward
towards the membrane until the contact force reached 0.45
N, it was then moved back 3.5 mm to start the trial out of
contact. During the test, the linear rail moved the F/T sensor in
0.05 mm steps towards the m-PMOT sensor. At each step, the
movement stopped for 0.1 s to allow the membrane to adjust
before collecting four lines of data with 0.01 s of gap between
them. Each line of data recorded the F/T sensor outputs in
Newtons (N), the position of the linear rail in millimetres
(mm) and the m-PMOT sensor tracking point positions in
pixels (px). When the force surpassed 2 N the motion was
reversed to collect unloading data. This threshold was chosen
as, in preliminary testing, it showed clear compression onto the
housing lip, surpassing membrane compression. Furthermore,
a previous study demonstrated that a sensing range of 0-2 N
enables a kinaesthetic palpation probe to detect variations in
local tissue stiffness indicative of underlying tumours during
lung tumour localization in MIS [22].

The experiment was repeated 15 times at internal pressures
of 3.3 kPa, 6.6 kPa, and 9.9 kPa. These pressures were chosen
because the membrane-housing seal became less reliable under
loads when the internal pressure was above 10 kPa. Ten trials
per pressure were used as training data, whilst five were
used as testing data. Three priming trials were performed and
discarded when the experiment was set up. The displacements
of tracking points from their initial positions were converted
to polar coordinates around the centre point. The changes in

distance from the centre point were averaged to find the mean
radial displacement (Ar) measured in pixels (px). To assess
the drift of the m-PMOT sensor over time, the experiment was
repeated five times at each pressure 8 weeks, 12 weeks and
15 weeks after the initial experiment.

B. Angled Force Sensing Methodology

The experiment in Section III-A was repeated using an
angled plate (Fig. 3b) to adjust the force angle. Training,
validation and testing data were collected using combinations
of X-angles (6x), Y-angles (fy), and internal pressures shown
in Table I. Ten trials of training, two trials of validation and
five trials of testing data were obtained from combinations of
internal pressures of 6.6 kPa and 9.9 kPa, X-angles (fx) of

TABLE 1
ANGLED FORCE SENSING PARAMETER COMBINATIONS
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Fig. 4. Normal force sensing range and sensitivity of the m-PMOT sensor
with different internal pressures. As internal pressure is increased, the range
increases whilst the sensitivity decreases.

0°, 20°, and 40°, and Y-angles (fy) of 0°, 10°, 20°, and 30°.
Five trials of testing data were also obtained from intermediate
variables: an internal pressure of 8.25 kPa, 6 x of 10°, and 30°,
and 0y of 5°, 15°, and 25°. At 3.3 kPa the sensor became too
flat to measure angles above 15°. Therefore 3.3 kPa was not
used for angled force sensing and can only be used for normal
or small angle sensing. The 0 x investigated range of up to 40°
was chosen to be above the 25° angle of reflectional symmetry
of the sensor membrane but below the 50° angle of rotational
symmetry. The fy maximum angle of 30° is the upper range
of the sensor. The dome construction of the membrane leads
to housing contact at low forces when at contract angles above
35°. The studied range covers many MIS scenarios where the
surgeon is operating close to normal to the tissue.

The data was cropped between 0.05 N and 1.54 N, the
maximum range in Fig. 4. Then, tracking point locations were
converted to radial and angular displacements (Ar & A#) in
px and degrees, respectively, from polar coordinate systems
around each tracking point. A regression neural network was
used to relate tracking point locations to force angles and
magnitudes. The inputs were defined as the Ar & A6 for
each tracking point and the pressure (P) in kPa. The outputs
were defined as the force (F) in N, and contact angles 6y
and x in degrees. These were used to train, validate and test
a neural network (NN) featuring five hidden fully connected
layers, each with 80 nodes using the rectified linear unit
(ReLU) activation function. The NN was trained for 50 epochs
with validation every 50 iterations. The network with the best
validation performance was extracted.

C. Normal Force Sensing Results

Results were processed to investigate how changing the
internal pressure of the sensor affects the force sensing range
and sensitivity, measure the m-PMOT sensor force sensing
parameters, and analyse the sensor accuracy. This was done
using only Ar tracking point displacements as Af was below
0.0436 Rad in all data.

The range and sensitivity of the sensor were extracted at
each internal pressure. The range was defined as the force
when the F/T sensor came into contact with the m-PMOT
housing. This location was found by carrying out five tests
with a depressurised sensor and extracting the position where
the force-position gradient exceeded six times the average of

1.5 ¢ 3.3 kPa 6.6 kPa 9.9 kPa
1k
3
[}
o
S
0.5
0 1 1 1 1 |
0 10 20 30 40 50

Displacement (px)

Fig. 5. Force-displacement 4th-order fit at each pressure with confidence
intervals. At each pressure, a single value of displacement corresponds to a
single value of force. Further, it is demonstrated that the sensitivity at each
pressure decreases across its sensing range.

TABLE I
NORMAL FORCE SENSING DATA VARIABILITY
WITH INTERNAL PRESSURE

Internal Pressure
33 kPa | 6.6 kPa | 9.9 kPa
04 Adjusted R? 0.916 0.962 0.978
d4 RMSE (N) 0.0646 0.0586 0.0580
04 RMSE (%) 7.10 4.84 3.77
TABLE III

NORMAL FORCE SENSING PARAMETERS

Internal Pressure
33 kPa | 6.6 kPa | 9.9 kPa
Inter-point (Mean RMSD %) 3.86 3.79 3.66
Deviation (SD RMSD %) | 0.1171 | 0.0595 | 0.1264
Non-repeatability (%) 2.263 2.166 2.199
Hysteresis (Mean %) 15.81 8.41 5.61
(SD %) 1.598 0.663 0.378

all preceding gradients. For each pressure, the average force at
this position was defined as the range. A best-fit straight line
was fitted to Ar-pressure data at each pressure. The sensitivity
was extracted as the gradient of this line. The range and
sensitivity are displayed at each pressure in Fig. 4.

The sensor Ar-pressure relationship was analysed, and the
sensor parameters were extracted. A 4th-order polynomial
was fitted to the Ar-pressure training data at each pressure.
These fits are shown with 95% confidence intervals in
Fig. 5, and the goodness of fit data is shown in Table II.
The sensor parameters are shown in Table III. The inter-
point deviation was defined as the root-mean-square deviation
(RMSD) between Ar and Ar across all tracking points and
data points. Non-repeatability was defined as the maximum
deviation between Ar values at the same position. Hysteresis
was calculated by fitting 6th-order polynomials to loading
and unloading data for each trial. The largest separation
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Fig. 6. An example hysteron at an internal pressure of 3.3 kPa. Displacement-
Force 6th-order fits with confidence intervals are displayed for loading and
unloading data of a single trial over the sensors force sensing range at this
pressure.

TABLE IV
NORMAL FORCE SENSING TEST DATA ACCURACY RESULTS
COMPARING ALL DATA TO LOADING ONLY DATA

Internal Pressure

33kPa | 6.6 kPa | 9.9 kPa

Bidirectional RMSE N 0.0853 0.0809 0.0785
Data RMSE % 9.31 6.59 5.05
Max Error % 22.3 18.9 14.4

Loading RMSE N 0.0139 0.0207 0.0160
Data RMSE % 3.00 3.07 1.75
Max Error % 7.32 7.67 6.40

between these fits, extracted at 0.1 N internals, was used
to find the mean and SD hysteresis. Hysteresis could not
be extracted from raw data because the position control did
not lead to identical, repeatable force values. A 6th-order fit
was therefore chosen as the polynomial fit with the highest
average coefficient of determination (adjusted R?) when the
data was split between loading and unloading. An example of
the hysteresis fits at 3.3 kPa is shown in Fig. 6.

The accuracy of the m-PMOT sensor was analysed by
comparing the test data to the 4th-order polynomial fits.
This model had a higher adjusted R? than other polynomial
fits. Table IV shows the root-mean-square error (RMSE) and
maximum error in Newtons and as a percentage of the range.
The same method was used to produce a 4th-order polynomial
fit from the training loading data and compare it to testing
loading data to analyse the effect of hysteresis.

The drift of the sensor over time was assessed. Table V
shows the errors between the data calculated from the base
experiment training data 4th-order fit and the testing data for
the base experiment, at 8 weeks, 12 weeks and 15 weeks.

D. Angled Force Sensing Results

After the neural network (NN) was trained on training
data, its accuracy was assessed using testing data. The RMSE
was calculated for groups of trials based on the parameter
being varied in comparison to the training data parameters.

TABLE V
NORMAL FORCE SENSING ERRORS WITH TIME

Internal Pressure
33KPa | 6.6 kPa | 99 kPa
Base | 0.0853 | 0.0800 | 0.0785
§ Weeks | 0.0663 | 0.0702 | 0.0857
RMSE N T2 Weeks | 0.0603 | 0.0579 | 0.0599
T5 Weeks | 0.0641 | 0.0735 | 0.1187

Table VI displays the RMSEs in Newtons and degrees, and
as a percentage of the tested range. These ranges were 1.54
N, 30° and 40°. The average RMSEs across all data were
0.129 N, 2.01°, and 5.57° for force, 6y, and 6x readings,
respectively. These correspond to 8.37%, 6.68%, and 13.92%
of their respective ranges.

Confusion matrices were used to present how errors were
distributed across angle measurements. These are shown
in Table VII and were produced by rounding the angle
predicted from the NN to the nearest 5° or 10° and plotting
them against the true angle. The effects of the angle and
magnitude of forces on errors were analysed. Data was split
by force at 0.5 N and by 0y between 15° and 20°. This
produced four groups; the RMSEs for each group are shown
in Table VIII. These relationships were analysed using T-
tests. Larger forces produced significantly higher force errors,
t(34110) = 121.48,p < 0.001, and Ox errors, ¢(34110) =
6.10,p < 0.001, and lower 6y errors, ¢(34110) = —9.47,p <
0.001. Larger 6y values correlated significantly with decreased
force errors, ¢(34110) = —16.06,p < 0.001, Oy errors,
t(34110) = —12.64,p < 0.001, and Ox errors, ¢(34110) =
—9.09,p < 0.001.

The effects of internal pressure on errors were examined
by examining the RMSEs at 6.6 kPa and 9.9 kPa, Table IX.
Kolmogorov-Smirnov tests for normality were not passed by
any variable at any pressure, therefore, Wilcoxon rank sum
tests were carried out between pressures. These showed that
the tests at an internal pressure of 9.9 kPa had significantly
higher force errors, z = 8.38,p < 0.001, and 6y errors, z =
4.92,p < 0.001, but lower dx errors, z = —8.80,p < 0.001
than tests at 6.6 kPa.

E. Normal Force Sensing Discussion

Fig. 4 shows that as the internal pressure of the m-PMOT
sensor increases, the sensor’s force sensing range increases,
and its sensitivity decreases. A 4th-order fit can be used to

TABLE VI
ANGLED SENSING NETWORK ACCURACY
WITH VARIABLES FROM THE TRAINING SET AND INTERMEDIATE
VARIABLES BETWEEN TRAINED VALUES

Trained Intermediate Fully

Variables | Pressures | 0y 0x |Intermediate
Force (N)| 0.1029 | 0.1081 [0.1898|0.0913| 0.1249
RMSE (%)| 6.68 7.02 12.32 | 5.93 8.11
0y (°)| 1l.16 1.18 3.18 | 1.21 3.18
RMSE (%)| 3.87 3.94 10.61 | 4.02 10.60
0x (°)| 373 4.06 6.53 | 7.00 7.61
RMSE (%)| 9.33 10.15 | 16.33 | 17.49 19.01
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TABLE VII
ANGLE SENSING CONFUSION MATRIX
SHOWING THE TRUE VALUE OF THE 6y AND 0x TEST DATA COMPARED
TO THE PREDICTED VALUE FROM THE NEURAL NETWORK. ALL VALUES
ARE GIVEN AS A PERCENTAGE OF THE TOTAL NUMBER OF DATA POINTS
FOR THAT TRUE VALUE.
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relate tracking point displacements to force. As demonstrated
in Fig. 5, each displacement measurement correlates to one
force value. Table II shows that as the internal pressure of
the m-PMOT sensor increased, its force-sensing accuracy did
not decrease. This means that whilst the sensitivity can be
increased by decreasing the internal pressure, it is negated by
the decrease in accuracy. This trend was also seen when fitting
training data in Table III, where the variability decreases with
pressure. This table shows that whilst there was little change in
inter-point deviations and non-repeatability with pressure, the
hysteresis decreased as the pressure increased. This table along
with the example hysteron in Fig. 6 show that hysteresis has
a large effect on the sensor’s accuracy. The higher hysteresis

TABLE VIII
RELATIONSHIP BETWEEN ERRORS IN EACH VARIABLE, AND THE
MAGNITUDE AND 0y OF THE FORCE

Low ey High 9y
(0 - 15°)[(20° - 30°)
No. Data-points | 10177 14395
Force RMSE (N)| 0.0728 0.0572 Low Force
0y RMSE (°) 2.46 1.79 (< 0.5N)
0x RMSE (°) 5.92 5.12
No. Data-points | 5231 4309
Force RMSE (N)| 0.204 0.241 High Force
0y RMSE (°) 1.80 1.71 (> 0.5N)
0x RMSE (°) 6.76 4.41

TABLE IX
ANGLED SENSING ACCURACY WITH PRESSURE

Internal Pressure

6.6 kPa 9.9 kPa

No. Data-points 12156 14164
Force RMSE (N) 0.132 0.134
6y RMSE (°) 2.07 1.96
0x RMSE (°) 6.25 5.04

at lower pressures is not present in tests on the PMOT sensor
in [12] and is most likely due to the dynamics of the smaller
membrane. Table IV shows that when the analysis is restricted
to loading data only to remove the effects of hysteresis, the
accuracy is best at the lowest pressure. However, the accuracy
is worst at 6.6 kPa, showing that there is still not a clear
correlation between accuracy and sensitivity. At their max
tested pressures, the m-PMOT sensor had a higher RMSE,
5.05% to 4.36% of range, but a lower max error, 14.4% to
21.8% of range, compared to the PMOT sensor. These errors
are both lower than RMSE of around 7.5% of range obtained
in normal planer force sensing with the gelsight sensor [4].

Table V shows that the m-PMOT sensor’s performance
fluctuates with time. Results show that over the 15 weeks after
the initial base fit, the drift caused the RMSEs to change by
less than 0.04 N. The lowest errors at all three pressures were
at 12 weeks, whilst the highest errors at 3.3 kPa and 6.6 kPa
were in the base experiment and at 9.9 kPa were at 15 weeks.
Showing that there was no consistent trend in errors increasing
or decreasing over time.

F. Angled Force Sensing Discussion

The m-PMOT sensor’s ability to measure the angle and
magnitude of forces is demonstrated in Table VI. Trained
variables produced the lowest 8y and Oy errors, whilst data
with intermediate 6 values produced the lowest force errors.
The low force errors with intermediate 6 x data may be due to
this data set also having a higher average 0y value. As will be
shown later in this discussion, higher 6y values correlate with
lower force errors. This was in line with intermediate 6y data
having the highest force measurement errors, and also had a
lower average fy value. 6y and fx measurements had the
highest errors with their respective intermediate values and
with fully intermediate values. This may be due to the NN
pulling these values towards trained values.

Table VII demonstrates that trained angles are identified
more accurately than intermediate angles, which are often
identified as closer to their nearest trained angle. This suggests
that the NN is over-fitting data. fy of 5° data has the lowest
accuracy. There was less training and validation data at 6y
of 0° than at other 6y training angles. This may have made
the network fit closer to a 6y of 10° rather than producing
a more linear fit between them. Although this shows that
there is room for improvement in the sensor algorithms, many
palpation tools only feed the normal force to the surgeon [23]—
[25]. Therefore, any level of angle detection could potentially
improve the surgeon’s ability to locate the edges of tumours.
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Table VIII and the related statistical tests prove that at
increased force values, the force and 6 x measurement errors
are increased whilst the Ay errors are decreased. Alongside
this, at increased 6y values, measurement errors are reduced
across all parameters. It should be noted that these correlations
are not independent as there is a higher ratio of low-force to
high-force data points at high fy values than at low 6y values.

The change in sensing accuracy between the two pressures
is shown in Table IX. Both the table and the Wilcoxon rank
sum tests show an increase in force measurement errors and a
decrease in Ox errors at 9.9 kPa. However, the 6y RMSE was
lower at 9.9 kPa, whilst the Wilcoxon rank sum test found that
the 6y errors were higher at 9.9 kPa. RMSE measurements
weight extremes and outliers heavily, whilst Wilcoxon rank
sum tests compare median values decreasing the weight of
extreme values. This suggests that at higher internal pressures,
the median 6y error increases, whilst an increase in extremely
low 6y errors decreases the RMSE.

Results were compared to angle force sensing results
with the PMOT sensor in [12]. The PMOT sensor RMSEs
were 0.276 N, 1.78° and 1.89° respectively, 9.86%, 5.26%
and 8.35% of their respective ranges. The m-PMOT sensor
RMSEs were 0.129 N, 2.01°, and 5.57°, corresponding to
8.37%, 6.68%, and 13.92% of their respective ranges. This
demonstrates that the m-PMOT sensor can measure the
magnitude of forces more accurately than the PMOT sensor,
but measures the force angle less accurately. This may be
due to the m-PMOT sensor having larger tracking points in
comparison to the membrane diameter, resulting in them being
less sensitive to small changes in angle.

IV. STIFFNESS SENSING EXPERIMENTS

An analysis of the m-PMOT sensor’s stiffness sensing
performance was carried out in line with the experiments run
in [13]. This measured the sensor’s ability to measure sample
elasticity and allowed the stiffness sensing accuracy of the m-
PMOT sensor to be compared to the accuracy of the PMOT
sensor in [13].

A. Stiffness Sensing Methodology

Phantoms ranging in elasticities between 4.20 kPa and
177.62 kPa were produced from Smooth-on platinum cure
elastomers as detailed in [13]. These phantoms were 30 mm
in height and had 50 mm in diameter. Samples were split into
training phantoms of 4.20 kPa, 9.12 kPa, 13.35 kPa, 29.27 kPa,
63.62 kPa, 111.41 kPa, and 177.62 kPa in elasticity and testing
phantoms with elasticities of 7.83 kPa, 12.32 kPa, 22.36 kPa,
42.12 kPa, 85.08 kPa, and 145.72 kPa. These stiffness values
cover a large range of tissues shown in Fig. 2 in [13].

The m-PMOT was mounted on a Franka Emika Panda robot
and held 10 mm above the phantom. The sensor membrane
was parallel to and concentric to the top of the phantom.
Optilube medical lubricant was used to cover both the phantom
and the membrane. After the tracking point’s initial positions
were obtained, the sensor was lowered into contact with
the phantom. Contact was standardised by measuring the

10 . ‘ ‘ ‘ |
0 2 4 6 3 10
Pressure (kPa)
o 42kPa o 9.1 kPa 13.4 kPa 29.3 kPa
63.6 kPa 111.4 kPa o 177.6 kPa

Fig. 7. Raw data during pressurisation in contact with phantoms of different
stiffness. Tracking point displacement, Ar, is graphed against the internal
pressure of the sensor. Different coloured data-points represent the different
stiffnesses of phantoms. The starting gradient of the line changes as the
phantom stiffness increases.

displacements of the eight outer tracking points. The sensor
was adjusted to an average displacement of 25-30 pixels.

To measure the internal pressure-tracking point
displacement relationship, the internal pressure was increased
to 9.77 kPa in steps of 0.061 kPa. At each step, the pressure
was held for 1.5 s whilst the membrane adjusted. Then, the
tracking point positions were recorded five times at 0.2 s
intervals. The experiment was repeated five times with each
training phantom. Tracking point positions were converted to
polar coordinates around the central point to find the radial
displacements (Ar) in pixels (px). The radial displacements
were averaged to produce Ar.

A second experiment was used to quickly quantify stiffness.
After contact was made, the pressure was set to 0 kPa, 2 kPa, 4
kPa, and then 6 kPa. At each of these pressures, the membrane
was adjusted during a 1 s pause. Then, tracking point locations
were sampled 4 times. This produced a mean sampling time
of 4.39 s. Lower sets of pressures showed more accurate
measurements on low stiffness samples whilst higher pressures
were more accurate at measuring high stiffness samples.
These pressures were chosen as they showed good accuracy
across the training phantoms in preliminary testing. Training
phantoms were tested 20 times to produce training data and 4
times for validation data. Both training and testing phantoms
were then tested 16 times for testing data. Training data
was used to train a feed-forward, fully connected regression
neural network (NN). This NN had three hidden layers of five
nodes each, all utilising rectified linear unit (ReLU) activation
functions. The Ar at each pressure was input to the network,
trained to output elasticity in kPa. A NN was chosen both
to be in line with [13], so that any differences observed can
be correlated to geometric changes from miniaturisation, and
because the NN produced more accurate results than other
regression fitting methods including linear, polynomial, and
generalized additive model regression.
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TABLE X
INITIAL PRESSURE-DISPLACEMENT GRADIENT (UP TO 1 KPA) VS
PHANTOM STIFFNESS

Phantom Stiffness (kPa)
220 | 9.12 [13.35]29.27 [63.62 [1I1.41[177.62
Gradient| ;5 seq| 10220 |-8.563 |-6.435|-3.566| -2.081 | -0.832
(px/kPa)

B. Stiffness Sensing Results

Fig. 7 shows raw Ar-internal pressure data at each sample
elasticity. This demonstrates a unique Ar-pressure curve for
each elasticity of phantom. The gradient of a linear fit of this
data up to 1 kPa is shown in Table X.

The neural network’s (NN) accuracy was assessed by
comparing its output to ground truth values. The calculated
root-mean-square errors (RMSEs) for each sample are shown
in Table XI in Newtons (N) and as a percent (%) of sample
stiffness. Across all samples, the RMSE was 11.96 kPa, 6.74%
of range, whilst the non-repeatability was 37.4%. The RMSEs
of trained and untrained samples were 10.1 kPa and 13.8 kPa,
5.71% and 7.79% of range, respectively. A Pearson product-
moment correlation showed that errors increased as phantom
stiffness increased, r(96) = 0.8650,p < 0.001.

C. Stiffness Sensing Discussion

Fig. 7 and Table X demonstrate that the Ar-pressure
relationship can be used to distinguish between phantoms
of different stiffness. There is an exponential increase in
elasticity between samples. However, the increase in initial
gradient between samples was not exponential. This suggests
that the change in the change in the Ar-pressure relationship
with elasticity is non-linear. Fig. 7 had higher intra-pressure
deviations, and lower inter-pressure deviations than were seen
in [13]. This suggests that the m-PMOT sensor will measure
phantom elasticity less accurately than the PMOT sensor.

The m-PMOT sensor measured the stiffness of phantoms
between 4.20 kPa and 177.79 kPa with an average RMSE of
11.96 kPa, 6.73% of the tested range. Testing phantoms were
sensed less accurately than training phantoms. Consistent with
the trends observed for the large-scale PMOT sensor in [13],
absolute errors increased with phantom stiffness.

For one of the untrained phantoms, the RMSE was more
than the difference to its preceding trained phantom. Also,
the RMSE of three other untrained phantoms was higher than
half the difference from their preceding trained phantoms. This
suggests that the stiffness sensing accuracy of the m-PMOT
sensor cannot reliably differentiate between this phantom set.

The stiffness sensing accuracy was worse with the m-PMOT
sensor, RMSE of untrained phantoms = 7.79% of range, than
with the PMOT sensor, RMSE of untrained phantoms = 2.85%
of range. This is likely due to differences in the structural
properties of the membranes of the sensors, especially their
compliance. Compared to other sensors in the literature, these
errors are higher than the hardness sensing RMSE of the
gelsight sensor, 5.95% of range, and higher than the maximum
spring stiffness measurement error from Faragasso et al., 6.4%
of sample spring stiffness [1], [2]. For one of the untrained

TABLE XI
STIFFNESS SENSING ACCURACY

Trained Phantom Stiffness (kPa)

420 | 9.12 [ 13.35]29.27 [ 63.62 [I11.41]177.62
RMSE (kPa) | 0.179 | 1.157 | 1.813 | 0.140 | 0.352 | 1.748 [26.433
RMSE (%) | 4.271 |12.685[13.583| 0.479 | 0.553 | 1.569 |14.882

Untrained Phantoms Stiffness (kPa)

7.83 [12.32 12236 | 42.12 | 85.08 [145.72
RMSE (kPa)| 1.361 | 1.066 | 6.711 [11.716|22.574|21.424
RMSE (%) |17.383| 8.649 [30.015|27.815|26.532|14.702

phantoms, the RMSE was higher than the difference to its
preceding trained phantoms. Additionally, the RMSE of three
other untrained phantoms was higher than half the difference
to their preceding trained phantoms. This suggests that the
stiffness sensing accuracy of the m-PMOT sensor cannot
reliably differentiate between this set of phantoms and that the
accuracy of the sensor will need to be improved before it can
be used to differentiate between tissues in a clinical setting.
The accuracy of the sensor for trained phantoms suggests that
this could be achieved by algorithm improvements.

V. PALPATION EXPERIMENT

An experiment was carried out to assess the m-PMOT’s
ability to locate embedded boundaries during palpation. This
experiment was carried out in line with the linear rail palpation
experiment in [13].

A. Palpation Methodology

The m-PMOT sensor’s accuracy for locating boundaries
during palpation was experimentally evaluated. Palpation was
assessed on a linear rail but not with participants because
extensive training would be required to prevent participants
from damaging the sinuscope. Smooth-On elastomers of 13.4
kPa, 22.4 kPa and 29.3 kPa were used to produce stadium-
shaped phantoms. The phantoms were half-filled with a softer
elastomer and half-filled with a stiffer elastomer embedded 2
mm, 4 mm, or 6 mm under the softer elastomer.

Fig. 8 shows the setup for the experiment. The m-PMOT
sensor was mounted on a linear rail above the phantom. Both
were covered in a thin layer of medical lubricant to reduce
shear forces. The internal pressure (P) of the sensor was set.
Then, the sensor was lowered to the preloaded force (F). The
sensor was moved from 25 mm left of the boundary (Fig. 8
A) to 25 mm right of the boundary (Fig. 8 B) and back (Fig. 8
B-A). At the end of each movement, 5.9 mm shear reversal
movements (denoted as SRM in Fig. 8) were used to reverse
the shear on the membrane. The linear rail position, tracking
point locations and internal pressure were sampled at a 5 Hz
frequency. Every five readings were averaged to reduce the
effect of outliers.

The experiment was repeated with different parameter
configurations shown next to the corresponding results in
Table XII. These configurations are made by varying the
parameters:

FE - Elasticity of the softer material.
E5 - Elasticity of the stiffer material.
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TABLE XII
MARGIN SENSING TRIALS
Input Parameters Outputs
E1 | Es D P Fo | Speed . . Soft-Stiff SNR | Stiff-Soft SNR | Mean Offset
Conf. # (kPa)| (kPa) | (mm) | (kPa) | (mN) | ( rrll) m/s) Sensor Orientation F F (mm)
1 1341293 | 2 5 50 | 0.75 Forward 46.79:1 67.28:1 0.660
2 1341293 | 2 6 50 | 0.75 Forward 59.19:1 94.90:1 0.709
3 1341293 | 2 7 50 | 0.75 Forward 37.83:1 52.31:1 0.677
4 1341293 | 2 6 40 | 0.75 Forward 50.77:1 70.18:1 0.970
5 1341293 | 2 6 60 | 0.75 Forward 64.40:1 89.16:1 1.165
6 134293 2 6 50 | 0.50 Forward 66.01:1 86.47:1 0.623
7 134293 2 6 50 1.00 Forward 45.27:1 73.28:1 1.046
8 1341293 2 6 50 | 0.75 Backward 62.23:1 78.00:1 0.713
9 1341224 | 2 6 50 | 0.75 Forward 18.92:1 43.22:1 0.359
10 1341224 | 2 5 50 | 0.75 Forward 15.34:1 32.64:1 0.478
11 1341224 | 2 7 50 | 0.75 Forward 16.43:1 40.08:1 0.462
12 1341224 | 2 6 40 | 0.75 Forward 17.63:1 35.43:1 0.465
13 1341224 | 2 6 60 | 0.75 Forward 20.20:1 36.23:1 0.316
14 2241293 | 2 6 50 | 0.75 Forward 10.02:1 16.04:1 0.413
15 2241293 | 2 5 50 | 0.75 Forward 10.15:1 17.11:1 0.387
16 2241293 2 7 50 | 0.75 Forward 8.46:1 12.22:1 0.776
17 2241293 2 6 40 | 0.75 Forward 8.64:1 14.28:1 0.514
18 2241293 2 6 60 | 0.75 Forward 10.66:1 16.22:1 0.519
19 134293 ] 4 6 50 | 0.75 Forward 26.33:1 29.60:1 0.550
20 134293 4 5 50 | 0.75 Forward 27.35:1 31.01:1 0.565
21 134293 ] 4 7 50 | 0.75 Forward 22.48:1 30.30:1 0.623
22 134293 ] 4 6 40 | 0.75 Forward 22.61:1 28.08:1 0.556
23 134293 ] 4 6 60 | 0.75 Forward 32.56:1 38.14:1 0.727
24 1341293 ] 6 6 50 | 0.75 Forward 17.51:1 25.67:1 0.710
25 134293 ] 6 5 50 | 0.75 Forward 16.36:1 25.51:1 0.887
26 134293 ] 6 7 50 | 0.75 Forward 17.34:1 26.15:1 0.680
27 1341293 ] 6 6 40 | 0.75 Forward 14.71:1 20.95:1 0.670
28 1341293 ] 6 6 60 | 0.75 Forward 20.26:1 25.57:1 0.829

Configuration 2, highlighted in grey, contains the baseline parameters.
The varied parameter in each test is highlighted in orange.

Soft-Stiff results are obtained by passing the sensor from the softer to the stiffer material (Fig. 8. A to B).
Stiff-Soft results are obtained by passing the sensor from the stiffer to the softer material (Fig. 8. B to A).

Offset is the distance between the margin and the middle of the signa

1.

D - Depth that the stiff material is embedded below the soft
material.

P - Pressure inside the m-PMOT sensor.

Fpy - Preloaded sensor force in the sample.

Speed - Linear rail velocity moving the sensor.

Sensor Orientation - Orientation at which the sensor was
mounted.

With regards to the orientation, the sensor is either mounted
forward, with the top of the camera towards the rail, or
backwards, with the top of the camera away from the rail.
Reversing the sensor orientation switched the leading and
trailing edges of the sensor.

The experiment was repeated three times in each
configuration. The first movement in each direction was
discarded, leaving 12 passes per direction per configuration.
Baseline parameters, highlighted in grey in Table XII, were
found from preliminary testing.

Preliminary testing repeated the experiment using the E; =
13.4 kPa, F5 = 29.3 kPa, D = 2 mm sample. The parameters
were altered, P ranging from 4 kPa to 8 kPa in steps of 1 kPa,
F ranging from 30 mN to 90 mN in steps of 5 mN, and Speed
ranging from 0.25 mm/s to 1 mm/s in steps of 0.25 mm/s.
The parameter combination with the highest signal-to-noise
ratio (SNR) was used as the baseline parameter. The tracking

point locations were converted to Ar using the method in
Section III-A. This was converted to a force in N using a
4th-order polynomial relationship trained through the method
described in Section III-C.

B. Palpation Results

The data was split into the signal section within 10 mm
of the boundary and the noise sections on either side of this.
The signal was extracted as the amplitude of the data in the
signal section, whilst the noise was calculated as the root mean
square deviation (RMSD) of the noise segments. The signal
was divided by the noise to find the signal-noise ratio (SNR).
The middle of the signal was found by fitting eight points
on each side of half the signal amplitude with a linear fit.
The half of the distance between where the fits for each pass
direction intercepted half the signal amplitude was extracted as
the offset in mm. The SNR in each direction and mean offset
for each parameter combination are shown in Table XII.

C. Palpation Discussion

Table XII’s results show that across all configurations,
the signal is more than eight times larger than the noise.
The baseline parameters (Conf. 2) produced an average SNR
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Fig. 8. Experimental setup for boundary location during dynamic palpation.
The m-PMOT sensor is mounted on a linear rail above a stadium-shaped
phantom. The sensor was lowered and moved across the phantom, from A to
B, and back, from B to A. Shear reversal movements (SRM) were performed
at each end of the movement.

of 77.04:1 and a mean offset of 0.706 mm. When P, Fj
and speed were increased and decreased from the baseline
parameters (Conf. 1 & 3-7), the average SNR decreased.
This demonstrates that the baseline parameters were a local
optimum of the investigated parameters.

When the difference between the elastomers was decreased
by decreasing F» (Conf. 9) or increasing F; (Conf. 14), the
SNR decreased. When FE5 was decreased (Conf. 9-13), no
parameter set had a higher SNR than the baseline parameters
(Conf. 9). However, when the elasticity of F; was increased
(Conf. 14-18), decreasing the pressure (Conf. 15) or increasing
the force (Conf. 18) increased the mean SNR. Further analysis
of the data showed that in both configurations (Conf. 15 & 18),
the noise and signal are both increased, with the signal being
increased more than the noise.

When the embedded depth was increased, the SNR was
increased at decreased pressures at a depth of 4 mm but at
increased pressures at a depth of 6 mm. At both increased

—

— %

Fig. 9. Sensor in Trocar Cannulas. Measurements of the m-PMOT sensor
inside the (a) Vaxcon Safepass Trocar and (b) Applied Medical Kii Balloon
Blunt-Tip Access System.

depths, raising the initial force increased the SNR whilst also
increasing the offset.

VI. ANALYSIS OF THE SENSOR’S REACH THROUGH
TROCARS

An analysis was performed to evaluate the sensor’s
reach when operated through trocar access ports. The study
combined direct measurements and mathematical analysis of
the m-PMOT sensor in trocars.

The sensor was tested with two cannulas: the Vaxcon
Safepass Trocar (75 mm sleeve length) and the Applied
Medical Kii Balloon Blunt-Tip Access System (100 mm sleeve
length). The latter includes a gel cone and suture ties, which
were expected to constrain the sensor’s range, see Fig. 9.

For each trocar, the distance between the sensing tip and the
sleeve tip was measured, along with the maximum insertion
reach from the upper reference point of the access port to the
sensor tip. The upper reference was defined as the top of the
sleeve for the Vaxcon model and the uppermost position of
the silicone cone for the Applied Medical model.

At its maximum reach or insertion limit, the sensor would
have no stroke along a normal surface. Then, assuming the
insertion movement of the trocar remains fixed and only the
sensor translates vertically from its uppermost position to the
sleeve tip, the maximum flat working diameter D,, can be
derived using Equation 1.

Dy =2x+/r2—(r—nh)? )

r denotes the reach of the sensor from the insertion point,
and h represents the height between the sleeve tip and the
sensing tip. Substituting the measured values into the equation
yields a D,, maximum of 164 mm for the Vaxcon trocar and
98.9 mm for the Applied Medical trocar. At the periphery of
these flat areas, the corresponding contact angles between the
sensor and a flat surface are 47.3° and 38.6°, respectively.
When constrained to the 30° contact angle (fx) conditions
described in Section III, the diameters reduce to 111.7 mm
and 79.3 mm, respectively.

The palpation areas of 9799 mm? and 4939 mm? will cover
a large proportion of the areas of spleens, kidneys and livers,
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TABLE XIII
COMPARISON BETWEEN LARGE AND MINIMISED PMOT SENSORS

[PMOT Sensor [m-PMOT Sensor

Design
Diameter (mm) 20 11.6
Removable No Yes
Angled Force Sensing
Force RMSE (%) 9.86 8.37
0y RMSE (%) 5.26 6.68
0x RMSE (%) 8.35 13.92

Elasticity Test Data Measurement

RMSE (%) | 2.85 [ 7.79
13.4 kPa to 2 mm embedded 29.3 kPa Palpation
SNR 38.15:1 77.04:1

Offset (mm) 1.526 0.706

which have areas of around 4884 mm?2, 3189 mm? and 16550
mm? respectively [26], [27]. A longer and/or articulated sensor
would enable palpation across larger surface areas, facilitating
the detection of wider or more laterally distributed tumours.
Increasing the length of the sensor will not affect the focal
length or field of view of the embedded camera, and therefore
will not compromise accuracy. The optical systems used in
laparoscopes and sinuscopes are designed so that focal length
and field of view can be adjusted independently of scope
length. The focal length is controlled by the objective lens,
while relay lenses take the light up to the scope. There will be
device-to-device variation depending on the specific objective
lenses used, but this variation is not correlated with length.

VII. COMPARISON BETWEEN PMOT SENSORS

Table XIII summarises the performance differences between
the PMOT and m-PMOT sensors. The m-PMOT sensor is
smaller with an outer diameter of 11.6 mm, allowing it to
fit in a trocar port for MIS and it is removable from the
camera, allowing for disposal of the sensor whilst retaining the
camera. The m-PMOT sensor elasticity measurement accuracy
was lower than that of the PMOT sensor. The m-PMOT sensor
showed comparable angled force sensing results and better
palpation results than the PMOT sensor. The SNR was higher,
77.04:1 to 38.15:1, and the offset was lower, 0.706 mm to
1.526 mm, when using the m-PMOT sensor compared to the
PMOT sensor. This demonstrated that the m-PMOT sensor can
locate boundaries both more clearly and more accurately than
the PMOT sensor.

VIII. CONCLUSION AND FUTURE WORK

This paper presents the design, fabrication, and evaluation
of a miniaturized stiffness sensor capable of passing through
trocars with diameters of 12 mm or greater, making it
suitable for palpation in minimally invasive surgery. The
sensor operates by measuring deformations of a compliance-
controllable membrane.

The m-PMOT sensor hardware incorporates an off-the-shelf
sinuscope and features a removable housing with an external
diameter of 11.6 mm. This design facilitates integration with
conventional camera systems. The removable housing allows
the camera to be retained while the housing is discarded,

enabling camera sterilization and reuse with a new housing
for different patients.

Performance evaluations of the m-PMOT sensor
demonstrated comparable angled force sensing and superior
palpation capabilities compared to the original PMOT sensor.
However, its elasticity measurement accuracy was lower,
indicating a key area for improvement in future work.

Future work should focus on enhancing sensor performance
and evaluating the sensor in environments that more accurately
simulate MIS. Many of the models used in this study exhibited
overfitting. Therefore, further research should aim to improve
these models to achieve more consistent performance. In
addition, future studies should investigate the impact of design
factors, such as alternative tracking methods and membrane
geometries, on sensor performance.

Surgeons are interested in understanding contact at all
angles at the surgical site. Additionally, MIS limits the
approach angles of tools, increasing the requirement for
sensing at high contact angles [28]. The sensor design should
be altered to allow force measurements up to 75° from the
normal plane to allow for high manipulation angles [29].
Further, in MIS, the surgeons’ movement is restricted by the
trocar to rotations around a point. This should be reflected in
the experimental setup. This could be paired with modifying
the sensor to function with an articulating laparoscopic camera
to maintain normal contact. In addition, it is important
to investigate how fingertip interfaces that provide haptic
feedback [30] influence surgical performance when integrated
with data collected by the m-PMOT sensor.
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