Innovative haptic interfaces

What is haptics?

To be able to interact with the physical world or virtual environment, there is the need of form of feedback which is called haptic feedback. Haptics involves a wide range of feedback from tactile senses up to proprioceptive senses using tactile, hybrid or kinesthetic devices. In this research area, we want to deepen our understanding of how the human makes use if the sense of touch and how to improve human interaction with robotic instruments.

The work of the #SoftHapticsLab focuses on ideas of how to implement, design and evaluate novel haptic systems to enhance the human perception in areas of Minimally Invasive Surgery (MIS) (see figure below) and Human Robot Interaction (HRI). We explore analytic and experimental approaches inspired by human bahaviour and embed obtained control strategies into our haptic devices.

Haptics-Lab

Pseudo-haptics

Sense of touch is crucial for surgeons to effectively identify tumours and boundaries, and, thus to achieve successful cancer resections. To overcome the touch information loss which occurs during robotic-assisted surgical procedures, researchers have proposed methods capable of acquiring partial haptic feedback and mimicking the physical interaction which takes place between surgical tools and human tissue during palpation. Under my supervision, haptic palpation systems were evaluated and the combination of different feedback methods were suggested for tumour identification in medical training and robot-assisted minimally invasive surgery using tissue models based on rolling indentation.

 

Stiffness feedback for soft tissue palpation

We have created a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined together to realize stiffness modulation.

Haptic interface